Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The precise atomic structure and therefore the wavelength-dependent opacities of lanthanides are highly uncertain. This uncertainty introduces systematic errors in modeling transients like kilonovae and estimating key properties such as mass, characteristic velocity, and heavy metal content. Here, we quantify how atomic data from across the literature as well as choices of thermalization efficiency ofr-process radioactive decay heating impact the light curve and spectra of kilonovae. Specifically, we analyze the spectra of a grid of models produced by the radiative transfer codeSedonathat span the expected range of kilonova properties to identify regions with the highest systematic uncertainty. Our findings indicate that differences in atomic data have a substantial impact on estimates of lanthanide mass fraction, spanning approximately 1 order of magnitude for lanthanide-rich ejecta, and demonstrate the difficulty in precisely measuring the lanthanide fraction in lanthanide-poor ejecta. Mass estimates vary typically by 25%–40% for differing atomic data. Similarly, the choice of thermalization efficiency can affect mass estimates by 20%–50%. Observational properties such as color and decay rate are highly model dependent. Velocity estimation, when fitting solely based on the light curve, can have a typical error of ∼100%. Atomic data of lightr-process elements can strongly affect blue emission. Even for well-observed events like GW170817, the total lanthanide production estimated using different atomic data sets can vary by a factor of ∼6.more » « less
-
Abstract We present the first deep X-ray observations of luminous fast blue optical transient (LFBOT) AT 2018cow at ∼3.7 yr since discovery, together with the reanalysis of the observation atδt∼ 220 days. X-ray emission is significantly detected at a location consistent with AT 2018cow. The very soft X-ray spectrum and sustained luminosity are distinct from the spectral and temporal behavior of the LFBOT in the first ∼100 days and would possibly signal the emergence of a new emission component, although a robust association with AT 2018cow can only be claimed atδt∼ 220 days, while atδt∼ 1350 days contamination of the host galaxy cannot be excluded. We interpret these findings in the context of the late-time panchromatic emission from AT 2018cow, which includes the detection of persistent, slowly fading UV emission withνLν≈ 1039erg s−1. Similar to previous works (and in analogy with arguments for ultraluminous X-ray sources), these late-time observations are consistent with thin disks around intermediate-mass black holes (withM•≈ 103–104M☉) accreting at sub-Eddington rates. However, differently from previous studies, we find that smaller-mass black holes withM•≈ 10–100M☉accreting at ≳the Eddington rate cannot be ruled out and provide a natural explanation for the inferred compact size (Rout≈ 40R☉) of the accretion disk years after the optical flare. Most importantly, irrespective of the accretor mass, our study lends support to the hypothesis that LFBOTs are accretion-powered phenomena and that, specifically, LFBOTs constitute electromagnetic manifestations of super-Eddington accreting systems that evolve to ≲Eddington over a ≈100-day timescale.more » « less
-
Abstract We present late-time radio/millimeter (as well as optical/UV and X-ray) detections of tidal disruption event (TDE) AT2018hyz, spanning 970–1300 d after optical discovery. In conjunction with earlier deeper limits, including those at ≈700 days, our observations reveal rapidly rising emission at 0.8–240 GHz, steeper than F ν ∝ t 5 relative to the time of optical discovery. Such a steep rise cannot be explained in any reasonable scenario of an outflow launched at the time of disruption (e.g., off-axis jet, sudden increase in the ambient density), and instead points to a delayed launch. Our multifrequency data allow us to directly determine the radius and energy of the radio-emitting outflow, and we find from our modeling that the outflow was launched ≈750 days after optical discovery. The outflow velocity is mildly relativistic, with β ≈ 0.25 and ≈0.6 for a spherical geometry and a 10° jet geometry, respectively, and the minimum kinetic energy is E K ≈ 5.8 × 10 49 and ≈6.3 × 10 49 erg, respectively. This is the first definitive evidence for the production of a delayed mildly relativistic outflow in a TDE; a comparison to the recently published radio light curve of ASASSN-15oi suggests that the final rebrightening observed in that event (at a single frequency and time) may be due to a similar outflow with a comparable velocity and energy. Finally, we note that the energy and velocity of the delayed outflow in AT2018hyz are intermediate between those of past nonrelativistic TDEs (e.g., ASASSN-14li, AT2019dsg) and the relativistic TDE Sw J1644+57. We suggest that such delayed outflows may be common in TDEs.more » « less
-
Abstract We present extensive multifrequency Karl G. Jansky Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the radio-bright supernova (SN) IIb SN 2004C that span ∼40–2793 days post-explosion. We interpret the temporal evolution of the radio spectral energy distribution in the context of synchrotron self-absorbed emission from the explosion’s forward shock as it expands in the circumstellar medium (CSM) previously sculpted by the mass-loss history of the stellar progenitor. VLBA observations and modeling of the VLA data point to a blastwave with average velocity ∼0.06cthat carries an energy of ≈1049erg. Our modeling further reveals a flat CSM density profileρCSM∝R−0.03±0.22up to a break radiusRbr≈ (1.96 ± 0.10) × 1016cm, with a steep density gradient followingρCSM∝R−2.3±0.5at larger radii. We infer that the flat part of the density profile corresponds to a CSM shell with mass ∼0.021M☉, and that the progenitor’s effective mass-loss rate varied with time over the range (50–500) × 10−5M☉yr−1for an adopted wind velocityvw= 1000 km s−1and shock microphysical parametersϵe= 0.1,ϵB= 0.01. These results add to the mounting observational evidence for departures from the traditional single-wind mass-loss scenarios in evolved, massive stars in the centuries leading up to core collapse. Potentially viable scenarios include mass loss powered by gravity waves and/or interaction with a binary companion.more » « less
-
Abstract We present UV and/or optical observations and models of SN 2023ixf, a type II supernova (SN) located in Messier 101 at 6.9 Mpc. Early time (flash) spectroscopy of SN 2023ixf, obtained primarily at Lick Observatory, reveals emission lines of Hi, Hei/ii, Civ, and Niii/iv/vwith a narrow core and broad, symmetric wings arising from the photoionization of dense, close-in circumstellar material (CSM) located around the progenitor star prior to shock breakout. These electron-scattering broadened line profiles persist for ∼8 days with respect to first light, at which time Doppler broadened the features from the fastest SN ejecta form, suggesting a reduction in CSM density atr≳ 1015cm. The early time light curve of SN 2023ixf shows peak absolute magnitudes (e.g.,Mu= −18.6 mag,Mg= −18.4 mag) that are ≳2 mag brighter than typical type II SNe, this photometric boost also being consistent with the shock power supplied from CSM interaction. Comparison of SN 2023ixf to a grid of light-curve and multiepoch spectral models from the non-LTE radiative transfer codeCMFGENand the radiation-hydrodynamics codeHERACLESsuggests dense, solar-metallicity CSM confined tor= (0.5–1) × 1015cm, and a progenitor mass-loss rate of yr−1. For the assumed progenitor wind velocity ofvw= 50 km s−1, this corresponds to enhanced mass loss (i.e.,superwindphase) during the last ∼3–6 yr before explosion.more » « less
An official website of the United States government
